

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

R16

B.Tech II Year I Semester Supplementary Examinations June 2019 FLUID MECHANICS & HYDRAULIC MACHINERY

(ME & AGE)

Ti	me	: 3 hours Max. Marks: 60		
		(Answer all Five Units $5 \times 12 = 60$ Marks)		
		UNIT-I		
1	a	Explain the phenomenon of capillarity. Obtain an expression for the capillary rise of a		
		liquid.	7M	
	b	The pressure outside the droplet of water of diameter 0.04 mm is 10.32 N/cm^2 . Calculate		
		the pressure within the droplet if surface tension is given as 0.0725 N/m of water.	5M	
		OR		
2	a	Derive an expression for the force exerted on a submerged vertical plane surface by the		
		static liquid.	5M	
	b	A rectangular plane surface 3 m wide and 4 m deep lies in water in such a way that its		
		plane makes an angle of 30° with the free surface of water. Determine the total pressure		
		force and position of center of pressure, when the upper edge is 2 m below the free surface.	7M	
		UNIT-II		
3	a	Explain the terms: stream line, streak line and path line.	6M	
	b	Explain the classification of fluid flow.	6M	
		OR		
4	a	Explain the terms: 'Hydraulic gradient line' and 'Energy gradient line'.	6M	
	b	A 30 cm diameter pipe, conveying water, branches into two pipes of diameters 20 cm and		
		15 cm respectively. If the average velocity in the 30 cm diameter pipe is 2.5 m/s. Find the		
		discharge in the pipe. Also determine the velocity in 15 cm pipe if the average velocity in		
		20 cm diameter pipe is 2 m/s.	6M	
UNIT-III				
5	a	Derive the Darcy - Weisbach equation for the loss of head due to friction in pipes.	8M	
	b	Explain the terms: i) Pipes in parallel and ii) Pipes in series.	4M	
		OR		
6	a	Explain Pitot tube and Pitot static tube.	6M	
	b	An orificemeter with orifice diameter 10 cm is inserted in a pipe of 20 cm diameter. The		
		pressure gauges fitted upstream and downstream of the orificemeter give readings of 19.62		
		N/cm ² and 9.81 N/cm ² respectively. Co-efficient of discharge for the orificemeter is given		
		as 0.6. Find the discharge of water through the pipe.	6M	
		UNIT-IV		
7	a	Explain the term 'dimensionally homogeneous equation' with an example.	6M	
	b	Describe the Rayleigh's method of dimensional analysis.	6M	
		OR		
8	a	Explain the three types of hydraulic similarities.	8M	
	b	Explain i) Euler's model law and ii) Weber model law.	4M	
		UNIT-V		
9	a	Explain the working principle of a Pelton wheel turbine with a neat sketch.	8M	
	b	Define the various heads of a centrifugal pump.	4M	
	-	OR		
10	a	A centrifugal pump delivers water against a net head of 14.5m and a design speed of 1000		
		r.p.m. The vanes of curved back to an angle of 30° with the periphery. The impeller		

	diameter is 300 mm and outlet width is 50mm. Determine the discharge of the pump if	
	manometric efficiency is 95%.	8M
b	Describe briefly about pumps in series and pumps in parallel.	4M

Page 1 of 1